4006-776-356 出国就医服务电话

免费获得国外相关药品,最快 1 个工作日回馈药物信息

出境医 / 临床实验 / The Effects of Exercise Training on Corticospinal System in Overhead Athletes With Shoulder Impingement Syndrome

The Effects of Exercise Training on Corticospinal System in Overhead Athletes With Shoulder Impingement Syndrome

Study Description
Brief Summary:
Shoulder impingement syndrome is the most common shoulder disorder in overhead athletes. It describes a mechanical compression of subacromial bursa and rotator cuff tendons during arm movement, which results in pain and injuries. Most of previous studies focus on investigating motor performance in individuals with shoulder impingement syndrome and found altered scapular kinematics and muscle activation may contribute to the impingement. Recently few studies found changes in the central nervous system, decreases in corticospinal excitability and increases in inhibition in scapular muscles, by using transcranial magnetic stimulation (TMS). Although more studies are still needed to investigate the changes in central nervous system in the individuals with impingement syndrome, the changes in central nervous system are believed to be associated with the deficits of impingement syndrome. However, the exercise protocols for the impingement syndrome are usually designed to restore scapular kinematics and muscle activation, including scapular muscle strengthening exercise and scapular control exercise. To our knowledge, no study has investigated whether these exercise protocols can reverse these changes in the corticospinal system. The objectives of this proposal are to understand neuromuscular and neurophysiological mechanisms of the scapula-focused exercise protocols to improve the effectiveness of treatment. The study aims to investigate the effects of scapular muscle strengthening training and scapular control training on the scapular kinematics, muscle activation and corticospinal system. The study also aims to investigate whether any other cortical mechanisms are also affected by the shoulder impingement syndrome. We will recruit 70 overhead athletes with shoulder impingement syndrome and 22 healthy control athletes. Subjects with shoulder impingement syndrome will randomly receive either scapular muscle strengthening or scapular control training. When performing the exercise, subjects in the scapular control training group will receive electromyography feedback and cues but those in the strengthening training group will not. Immediate effects of these two training protocols on scapular kinematics, muscle activation, and neurophysiological measures will be tested before and after the training. Neurophysiological measures will be tested by TMS, including corticospinal excitability, cortical inhibition, intracortical inhibition, and intracortical facilitation.

Condition or disease Intervention/treatment Phase
Shoulder Impingement Syndrome Transcranial Magnetic Stimulation Central Nervous System Biomechanical Phenomena Procedure: Scapula control exercise Procedure: scapular strengthening exercise Other: No intervention Not Applicable

Study Design
Layout table for study information
Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 65 participants
Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: Single (Participant)
Primary Purpose: Treatment
Official Title: The Effects of Scapular Control and Strengthening Training on Neuromuscular Control and Corticospinal System in Overhead Athletes With Shoulder Impingement Syndrome
Actual Study Start Date : October 22, 2019
Actual Primary Completion Date : February 28, 2021
Actual Study Completion Date : February 28, 2021
Arms and Interventions
Arm Intervention/treatment
Experimental: Scapula control exercise
Subjects will perform three exercises with EMG biofeedback and verbal cues. Three exercises are elevation in scapular plane, sidelying external rotation and dynamic hug plus
Procedure: Scapula control exercise
To perform arm elevation in the scapular plane, subjects will be first asked to correct scapular resting posture in sitting with EMG biofeedback. Then the subjects will be instructed to do elevation in the scapular plane, side lying external rotation and dynamic hug plus with control of the scapula by EMG feedback and verbal cues

Experimental: Scapula strengthening exercise
The subjects in the scapular strengthening group will be asked to perform the three exercises the same as scapula control exercise group and with the same number of trials but without any EMG biofeedback and oral cues of movement or posture correction.
Procedure: scapular strengthening exercise
The subjects in the scapular strengthening group will be asked to perform these three exercises the same as scapula control group and with the same number of trials but without any EMG biofeedback and oral cues of movement or posture correction.

Healthy subject group
Healthy subjects will be included to compare the differences in corticospinal system between healthy subjects and subjects with shoulder impingement syndrome, so this group will not receive any treatment.
Other: No intervention
No intervention

Outcome Measures
Primary Outcome Measures :
  1. Neurophysiological measures - Active motor threshold [ Time Frame: Immediately after the intervention ]
    Active motor threshold (AMT) will be described with the percentage (%) of maximum stimulator output (MSO).

  2. Neurophysiological measures - Motor evoked potential [ Time Frame: Immediately after the intervention ]
    Motor evoked potential (MEP) will be described with millivolt (mV).

  3. Neurophysiological measures - Cortical silent period [ Time Frame: Immediately after the intervention ]
    Cortical silent period (CSP) will be measured with millisecond (ms).

  4. Neurophysiological measures - Short interval cortical inhibition [ Time Frame: Immediately after the intervention ]
    Short interval cortical inhibition (SICI) will be defined as percentage (%) of conditioning responses vs testing responses while the inter-stimulus interval is below 5 ms

  5. Neurophysiological measures - Intra-cortical facilitation [ Time Frame: Immediately after the intervention ]
    Intra-cortical facilitation (ICF) will be defined as percentage (%) of conditioning responses vs testing responses while the inter-stimulus interval is above 5 ms


Secondary Outcome Measures :
  1. Scapular kinematics [ Time Frame: Immediately after the intervention ]
    Scapular kinematics, including anterior/posterior tilt, upward/downward rotation, and internal/external rotation in scapula plan elevation at 30°, 60°, 90°, and 120°, will be calculated and will be described with degree (°).

  2. Scapular muscles activation [ Time Frame: Immediately after the intervention ]
    The root mean square of electromyography (EMG) data of the upper trapezius, lower trapezius, and serratus anterior will be normalized by the maximum voluntary contraction amplitude (percentage of maximal voluntary contraction, %) and calculated over three 30° increments of motion during arm elevation from 30° to 120°, including 30° - 60°, 60° - 90°, and 90° - 120°


Eligibility Criteria
Layout table for eligibility information
Ages Eligible for Study:   20 Years to 40 Years   (Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria: (patients of shoulder impingement)

  1. Practice overhead exercise more than six hours a week,
  2. Aged 20 to 40 years old,
  3. Have shoulder pain localized at the anterior or lateral aspect of shoulder more than two weeks,
  4. Have obvious medial border prominence of the scapula at 90° of arm elevation,
  5. Have shoulder impingement syndrome, which is confirmed by having at least two of the following: (a) positive Neer test, (b) positive Hawkins sign, (c) positive empty can test, (d) positive resisted external rotation test, and (e) tenderness of the rotator cuff tendons

Inclusion Criteria: (healthy subjects)

  1. Practice overhead exercise more than six hours a week,
  2. Aged 20 to 40 years old,
  3. Not have a history of shoulder or neck pain or injury.

Exclusion Criteria (patients of shoulder impingement and healthy subjects)

  1. Have a history of dislocation, fracture, or surgery of upper extremity,
  2. A history of direct contact injury to the neck or upper extremities within the past 12 months,
  3. A concussion within the past 12 months or a history of three or more concussions,
  4. Brain injury and neurological impairment,
  5. History of frequent headache or dizziness,
  6. Contraindications to the use of TMS, assessed with a safety screening questionnaire, including pregnancy, history of seizure, epilepsy and syncope, having cochlear implant, having medal implant and taking anti-depressant medication.
Contacts and Locations

Locations
Layout table for location information
Taiwan
Yin-Liang Lin
Taipei, Taiwan, 112
Sponsors and Collaborators
National Yang Ming University
Investigators
Layout table for investigator information
Principal Investigator: Yin-Liang Lin, PhD National Yang Ming University
Tracking Information
First Submitted Date  ICMJE July 1, 2019
First Posted Date  ICMJE July 10, 2019
Last Update Posted Date May 24, 2021
Actual Study Start Date  ICMJE October 22, 2019
Actual Primary Completion Date February 28, 2021   (Final data collection date for primary outcome measure)
Current Primary Outcome Measures  ICMJE
 (submitted: July 9, 2019)
  • Neurophysiological measures - Active motor threshold [ Time Frame: Immediately after the intervention ]
    Active motor threshold (AMT) will be described with the percentage (%) of maximum stimulator output (MSO).
  • Neurophysiological measures - Motor evoked potential [ Time Frame: Immediately after the intervention ]
    Motor evoked potential (MEP) will be described with millivolt (mV).
  • Neurophysiological measures - Cortical silent period [ Time Frame: Immediately after the intervention ]
    Cortical silent period (CSP) will be measured with millisecond (ms).
  • Neurophysiological measures - Short interval cortical inhibition [ Time Frame: Immediately after the intervention ]
    Short interval cortical inhibition (SICI) will be defined as percentage (%) of conditioning responses vs testing responses while the inter-stimulus interval is below 5 ms
  • Neurophysiological measures - Intra-cortical facilitation [ Time Frame: Immediately after the intervention ]
    Intra-cortical facilitation (ICF) will be defined as percentage (%) of conditioning responses vs testing responses while the inter-stimulus interval is above 5 ms
Original Primary Outcome Measures  ICMJE Same as current
Change History
Current Secondary Outcome Measures  ICMJE
 (submitted: July 9, 2019)
  • Scapular kinematics [ Time Frame: Immediately after the intervention ]
    Scapular kinematics, including anterior/posterior tilt, upward/downward rotation, and internal/external rotation in scapula plan elevation at 30°, 60°, 90°, and 120°, will be calculated and will be described with degree (°).
  • Scapular muscles activation [ Time Frame: Immediately after the intervention ]
    The root mean square of electromyography (EMG) data of the upper trapezius, lower trapezius, and serratus anterior will be normalized by the maximum voluntary contraction amplitude (percentage of maximal voluntary contraction, %) and calculated over three 30° increments of motion during arm elevation from 30° to 120°, including 30° - 60°, 60° - 90°, and 90° - 120°
Original Secondary Outcome Measures  ICMJE Same as current
Current Other Pre-specified Outcome Measures Not Provided
Original Other Pre-specified Outcome Measures Not Provided
 
Descriptive Information
Brief Title  ICMJE The Effects of Exercise Training on Corticospinal System in Overhead Athletes With Shoulder Impingement Syndrome
Official Title  ICMJE The Effects of Scapular Control and Strengthening Training on Neuromuscular Control and Corticospinal System in Overhead Athletes With Shoulder Impingement Syndrome
Brief Summary Shoulder impingement syndrome is the most common shoulder disorder in overhead athletes. It describes a mechanical compression of subacromial bursa and rotator cuff tendons during arm movement, which results in pain and injuries. Most of previous studies focus on investigating motor performance in individuals with shoulder impingement syndrome and found altered scapular kinematics and muscle activation may contribute to the impingement. Recently few studies found changes in the central nervous system, decreases in corticospinal excitability and increases in inhibition in scapular muscles, by using transcranial magnetic stimulation (TMS). Although more studies are still needed to investigate the changes in central nervous system in the individuals with impingement syndrome, the changes in central nervous system are believed to be associated with the deficits of impingement syndrome. However, the exercise protocols for the impingement syndrome are usually designed to restore scapular kinematics and muscle activation, including scapular muscle strengthening exercise and scapular control exercise. To our knowledge, no study has investigated whether these exercise protocols can reverse these changes in the corticospinal system. The objectives of this proposal are to understand neuromuscular and neurophysiological mechanisms of the scapula-focused exercise protocols to improve the effectiveness of treatment. The study aims to investigate the effects of scapular muscle strengthening training and scapular control training on the scapular kinematics, muscle activation and corticospinal system. The study also aims to investigate whether any other cortical mechanisms are also affected by the shoulder impingement syndrome. We will recruit 70 overhead athletes with shoulder impingement syndrome and 22 healthy control athletes. Subjects with shoulder impingement syndrome will randomly receive either scapular muscle strengthening or scapular control training. When performing the exercise, subjects in the scapular control training group will receive electromyography feedback and cues but those in the strengthening training group will not. Immediate effects of these two training protocols on scapular kinematics, muscle activation, and neurophysiological measures will be tested before and after the training. Neurophysiological measures will be tested by TMS, including corticospinal excitability, cortical inhibition, intracortical inhibition, and intracortical facilitation.
Detailed Description Not Provided
Study Type  ICMJE Interventional
Study Phase  ICMJE Not Applicable
Study Design  ICMJE Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: Single (Participant)
Primary Purpose: Treatment
Condition  ICMJE
  • Shoulder Impingement Syndrome
  • Transcranial Magnetic Stimulation
  • Central Nervous System
  • Biomechanical Phenomena
Intervention  ICMJE
  • Procedure: Scapula control exercise
    To perform arm elevation in the scapular plane, subjects will be first asked to correct scapular resting posture in sitting with EMG biofeedback. Then the subjects will be instructed to do elevation in the scapular plane, side lying external rotation and dynamic hug plus with control of the scapula by EMG feedback and verbal cues
  • Procedure: scapular strengthening exercise
    The subjects in the scapular strengthening group will be asked to perform these three exercises the same as scapula control group and with the same number of trials but without any EMG biofeedback and oral cues of movement or posture correction.
  • Other: No intervention
    No intervention
Study Arms  ICMJE
  • Experimental: Scapula control exercise
    Subjects will perform three exercises with EMG biofeedback and verbal cues. Three exercises are elevation in scapular plane, sidelying external rotation and dynamic hug plus
    Intervention: Procedure: Scapula control exercise
  • Experimental: Scapula strengthening exercise
    The subjects in the scapular strengthening group will be asked to perform the three exercises the same as scapula control exercise group and with the same number of trials but without any EMG biofeedback and oral cues of movement or posture correction.
    Intervention: Procedure: scapular strengthening exercise
  • Healthy subject group
    Healthy subjects will be included to compare the differences in corticospinal system between healthy subjects and subjects with shoulder impingement syndrome, so this group will not receive any treatment.
    Intervention: Other: No intervention
Publications * Not Provided

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruitment Information
Recruitment Status  ICMJE Completed
Actual Enrollment  ICMJE
 (submitted: November 9, 2020)
65
Original Estimated Enrollment  ICMJE
 (submitted: July 9, 2019)
92
Actual Study Completion Date  ICMJE February 28, 2021
Actual Primary Completion Date February 28, 2021   (Final data collection date for primary outcome measure)
Eligibility Criteria  ICMJE

Inclusion Criteria: (patients of shoulder impingement)

  1. Practice overhead exercise more than six hours a week,
  2. Aged 20 to 40 years old,
  3. Have shoulder pain localized at the anterior or lateral aspect of shoulder more than two weeks,
  4. Have obvious medial border prominence of the scapula at 90° of arm elevation,
  5. Have shoulder impingement syndrome, which is confirmed by having at least two of the following: (a) positive Neer test, (b) positive Hawkins sign, (c) positive empty can test, (d) positive resisted external rotation test, and (e) tenderness of the rotator cuff tendons

Inclusion Criteria: (healthy subjects)

  1. Practice overhead exercise more than six hours a week,
  2. Aged 20 to 40 years old,
  3. Not have a history of shoulder or neck pain or injury.

Exclusion Criteria (patients of shoulder impingement and healthy subjects)

  1. Have a history of dislocation, fracture, or surgery of upper extremity,
  2. A history of direct contact injury to the neck or upper extremities within the past 12 months,
  3. A concussion within the past 12 months or a history of three or more concussions,
  4. Brain injury and neurological impairment,
  5. History of frequent headache or dizziness,
  6. Contraindications to the use of TMS, assessed with a safety screening questionnaire, including pregnancy, history of seizure, epilepsy and syncope, having cochlear implant, having medal implant and taking anti-depressant medication.
Sex/Gender  ICMJE
Sexes Eligible for Study: All
Ages  ICMJE 20 Years to 40 Years   (Adult)
Accepts Healthy Volunteers  ICMJE Yes
Contacts  ICMJE Contact information is only displayed when the study is recruiting subjects
Listed Location Countries  ICMJE Taiwan
Removed Location Countries  
 
Administrative Information
NCT Number  ICMJE NCT04014491
Other Study ID Numbers  ICMJE YM108043F
Has Data Monitoring Committee Not Provided
U.S. FDA-regulated Product
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
IPD Sharing Statement  ICMJE
Plan to Share IPD: No
Responsible Party National Yang Ming University
Study Sponsor  ICMJE National Yang Ming University
Collaborators  ICMJE Not Provided
Investigators  ICMJE
Principal Investigator: Yin-Liang Lin, PhD National Yang Ming University
PRS Account National Yang Ming University
Verification Date May 2021

ICMJE     Data element required by the International Committee of Medical Journal Editors and the World Health Organization ICTRP