4006-776-356 出国就医服务电话

免费获得国外相关药品,最快 1 个工作日回馈药物信息

出境医 / 临床实验 / Hypotension During Extracorporeal Circulatory Support Indicated for Cardiogenic Shock (RetroECMO-VP)

Hypotension During Extracorporeal Circulatory Support Indicated for Cardiogenic Shock (RetroECMO-VP)

Study Description
Brief Summary:

The cardiogenic shock is characterized by an alteration of organs function following a decrease in cardiac output linked to an impairment of cardiac performance. The prognosis remains poor with mortality between 40 and 50%. Nowadays, Extracorporeal Life Support (ECLS or VA-ECMO) is the referent therapy to restore blood flow in the body when medical treatment is not sufficient. Despite a good blood flow provided by the ECLS, many patients develop a severe hypotension (so called vasoplegia) due to a loss of vascular resistance mainly explained by the inflammatory response to shock and extracorporeal circulation. The treatment of this reaction includes vasopressors (Norepinephrine in usual care) and serum surrogate perfusion to achieve a mean arterial pressure (MAP) above 65 mmHg.

The purpose of this study is to describe the patients with vasoplegia among a retrospective cohort of patients treated with an ECLS in our university center, over the 4 last years, to determine major complication rate (including death, kidney failure and arrythmias) and their outcome. This study will provide consistent data useful for further trials about targets of pressure and treatments to increase blood pressure during ECLS.


Condition or disease Intervention/treatment
Extracorporeal Life Support Hypotension Vasoplegia Other: Arterial pressure management during circulatory support by VA-ECMO

Detailed Description:

Cardiogenic shock is characterized by global tissue hypoperfusion following a decrease in cardiac output by impairing myocardial performance in the absence of hypovolemia. This life-threatening hypoperfusion quickly leads to multiple organs dysfunction with a high risk of cardiac arrest. The main cause is ischemic. The prognosis remains poor with mortality between 40 and 50% and depends on the speed of care by a specialized team. Early etiologic treatment is essential, but initial symptomatic management is based on catecholamines, mainly norepinephrine and dobutamine. The intra-aortic balloon pump showed no improvement in survival in large randomized studies. Refractory cardiogenic shock is defined by the inefficiency or intolerance of catecholamines and the indication of temporary circulatory support should be considered as soon as possible in the absence of contraindications (comorbidities, advanced age, therapeutic limitation). The veno-arterial extracorporeal membrane oxygenation (VA-ECMO or ECLS) is the preferred circulatory assistance in this indication because it provides an overall circulatory support up to 100% of the theoretical cardiac output, with oxygenation, and is quickly implanted peripherally (surgical or percutaneous cannulation of the femoral vein and the femoral artery). However, this extracorporeal circulation also has disadvantages by opposing a major afterload to the failing left ventricle and reducing or even abolishing the pulmonary circulation and blood flow in the heart chambers. In addition, the interaction with the artificial surfaces and the oxygenation membrane of the extracorporeal circuit contributes to the inflammatory response already initiated as a result of low cardiac output, tissue hypoperfusion, mesenteric ischemia and possibly myocardial infarction in case of acute coronary syndrome. This systemic inflammatory response syndrome (SIRS) is similar to sepsis and its main clinical presentation is a vascular dysfunction resulting in vasoplegia and capillary leak syndrome responsible for relative hypovolemia and interstitial inflation.

Since the flow provided by the centrifugal pump is continuous, the blood pressure under VA-ECMO presents low or no pulsatile waves and is better represented by the mean arterial pressure (MAP). The ideal targets of MAP under VA-ECMO are controversial but it is widely accepted that the MAP should not be less than 65mmHg as recommended in septic shock to maintain an acceptable perfusion pressure and should not exceed 95mmHg to limit afterload. Between these limits, the MAP must be individualized according to each situation (hypertensive patient for example). In France, Norepinephrine is the first-line drug to achieve this goal of MAP after correction of volemia, without dose limitation in the absence of currently validated alternative, while resistance mechanisms can be activated, and its efficiency may be limited in case of acidosis. Potential side effects are the occurrence of atrial or ventricular arrhythmias, tachycardia, pro-inflammatory cytokine release, immunosuppression, renal dysfunction.

Management of MAP and vasopressors under VA-ECMO is poorly described in the literature (5), although Norepinephrine is widely used in routine practice. In particular, the investigators do not know the frequency of use and Norepinephrine doses during ECMO-VA, as well as their prognostic involvement. Vasoplegia during VA-ECMO is defined by a Norepinephrine dose greater than 0.1µg/kg/min after a 500ml fluid challenge despite overall blood flow (ECMO + native heart) greater than 2l/min/m2 or allowing to achieve 65% of ScvO2.

This cohort study aims to describe the vasoplegia observed during VA-ECMO, the Norepinephrine treatment characteristics, complications and outcome. The primary end-point is the incidence of a composite criteria of major complications including death, acute kidney injury and arrythmias.

Study Design
Layout table for study information
Study Type : Observational
Estimated Enrollment : 150 participants
Observational Model: Cohort
Time Perspective: Retrospective
Official Title: Vasoplegia During VA-ECMO for Refractory Cardiogenic Shock : Descriptive Analysis of a Retrospective Cohort
Actual Study Start Date : June 30, 2019
Estimated Primary Completion Date : December 1, 2020
Estimated Study Completion Date : December 30, 2020
Arms and Interventions
Group/Cohort Intervention/treatment
Vasoplegic ECMO
All patients during VA-ECMO support for cardiogenic shock who presented, within 48 hours after implantation, a vasoplegia defined by a norepinephrine dose greater than 0.1µg/kg/min after a 500ml fluid challenge despite overall blood flow (ECMO + native heart) greater than 2l/min/m2 or allowing to achieve 65% of ScvO2
Other: Arterial pressure management during circulatory support by VA-ECMO
Norepinephrine continuous infusion to maintain mean arterial pressure above 65 mmHg or at a higher level depending of the perfusion pressure targeted for the patient (mean arterial pressure between 65 and 85 mmHg)

Outcome Measures
Primary Outcome Measures :
  1. Major complication composite criteria [ Time Frame: Up to 7 days for acute kidney injury and arrythmia, and 30 days for death ]
    Observation of acute kidney injury defined by KDIGO classification 2 or 3, or severe arrythmia (i.e. atrial fibrillation with heart rate above 150bpm or a mean arterial pressure decrease of at least 20%, sustained ventricular tachycardia, ventricular fibrillation), or death


Secondary Outcome Measures :
  1. Initial refractory hypotension [ Time Frame: Up to 2 hours ]
    Norepinephrine dose maintained always above 1µg/kg/min during the first 2 hours after VA-ECMO implantation for a minimal mean arterial pressure target at 65mmHg

  2. Refractory vasoplegia [ Time Frame: Up to 7 days ]
    Norepinephrine dose above 1µg/kg/min required to maintain mean arterial pressure above 65mmHg or at the personalized mean arterial pressure target

  3. Mortality rate [ Time Frame: Through ICU discharge, an average of 1 month, up to 7, 30 and 90 days ]
    Overall mortality rate

  4. VA-ECMO free days [ Time Frame: At 30 days from the VA-ECMO implantation ]
    Number of days alive free of VA-ECMO at 30 days after VA-ECMO implantation

  5. Mean arterial pressure [ Time Frame: Up to 7 days ]
    lowest and highest mean arterial pressure (mmHg)

  6. Pulse pressure [ Time Frame: Up to 7 days ]
    lowest and highest pulse pressure (mmHg) defined by the difference between systolic and diastolic pressure

  7. Native cardiac output [ Time Frame: Up to 7 days ]
    lowest and highest cardiac output (L/min) measured by echocardiography (Doppler aortic Velocity Time Integration) or by a pulmonary artery catheter

  8. ECMO flow [ Time Frame: Up to 7 days ]
    lowest and highest flow of VA-ECMO (L/min)

  9. Lactate [ Time Frame: Up to 7 days ]
    Highest lactate level of the day (mmol/l)

  10. ScvO2 [ Time Frame: Up to 7 days ]
    Highest and lowest central venous oxygen saturation (%)

  11. Urine output [ Time Frame: Up to 7 days ]
    Total urine output of the day (ml/24H)

  12. Hydric balance [ Time Frame: Up to 7 days ]
    Total hydric balance calculated from day 0 to day 7 (ml)

  13. Hospital stay [ Time Frame: through study completion, an average of 3 month ]
    Length (days) of hospital stay from the VA-ECMO implantation before current care ward discharge (excluding rehabilitation time)

  14. Intensive care unit stay [ Time Frame: through study completion, an average of 3 month ]
    Length (days) of intensive care unit stay from the VA-ECMO implantation

  15. Issue of VA-ECMO [ Time Frame: 7 days after VA-ECMO withdrawal ]
    Status after VA-ECMO including death, heart transplant, ventricular assist device, recovery, shock recurrence, therapy limitation

  16. Serious adverse events [ Time Frame: Trough VA-ECMO time completion, an average of 2 weeks ]
    Stroke, bleeding requiring blood transfusion or surgical revision, limb ischemia, mesenteric ischemia, documented infection

  17. Organ failure assessment [ Time Frame: At day 0, 5 and 10 after VA-ECMO implantation ]
    Sequential Organ Failure Assessment score (0 to 24), higher values represent a worse outcome


Biospecimen Retention:   None Retained
Plasma: preoperative, ICU admission at POD0 and POD1 samples

Eligibility Criteria
Layout table for eligibility information
Ages Eligible for Study:   18 Years to 80 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Sampling Method:   Non-Probability Sample
Study Population
Patients admitted in intensive care unit for cardiogenic shock at the Montpellier University Hospital and who required a VA-ECMO implantation
Criteria

Inclusion criteria:

  • Refractory cardiogenic shock due to an acute coronary syndrome, a decompensation of chronic heart failure, a infectious or adrenergic myocarditis, or in a post-cardiotomy setting
  • Admitted in our intensive care unit between January 2015 and December 2018
  • Vasoplegia during the first 48 hours of VA-ECMO requiring more than 0.1µg/kg/min of Norepinephrine continuous infusion

Exclusion criteria:

  • Others etiologies of cardiogenic shock : heart transplant dysfunction, right ventricular failure after left ventricular assist device implantation, drug intoxication, hypothermia, pulmonary embolism
  • Primary septic shock
  • Cardiac arrest with a no-flow time greater than 5 min or a low-flow time greater than 45 min
  • Opposition to participate after reception of the information letter
Contacts and Locations

Contacts
Layout table for location contacts
Contact: Philippe Gaudard, MD +33665849543 p-gaudard@chu-montpellier.fr
Contact: Helene David, MD 629834346 ext 33 h-david@chu-montpellier.fr

Locations
Layout table for location information
France
Uh Montpellier Recruiting
Montpellier, France, 34295
Contact: Philippe Gaudard, MD    +33665849543    p-gaudard@chu-montpellier.fr   
Sponsors and Collaborators
University Hospital, Montpellier
Investigators
Layout table for investigator information
Principal Investigator: Philippe Gaudard, MD University Hospital, Montpellier
Tracking Information
First Submitted Date May 23, 2019
First Posted Date May 30, 2019
Last Update Posted Date March 10, 2020
Actual Study Start Date June 30, 2019
Estimated Primary Completion Date December 1, 2020   (Final data collection date for primary outcome measure)
Current Primary Outcome Measures
 (submitted: May 28, 2019)
Major complication composite criteria [ Time Frame: Up to 7 days for acute kidney injury and arrythmia, and 30 days for death ]
Observation of acute kidney injury defined by KDIGO classification 2 or 3, or severe arrythmia (i.e. atrial fibrillation with heart rate above 150bpm or a mean arterial pressure decrease of at least 20%, sustained ventricular tachycardia, ventricular fibrillation), or death
Original Primary Outcome Measures Same as current
Change History
Current Secondary Outcome Measures
 (submitted: May 28, 2019)
  • Initial refractory hypotension [ Time Frame: Up to 2 hours ]
    Norepinephrine dose maintained always above 1µg/kg/min during the first 2 hours after VA-ECMO implantation for a minimal mean arterial pressure target at 65mmHg
  • Refractory vasoplegia [ Time Frame: Up to 7 days ]
    Norepinephrine dose above 1µg/kg/min required to maintain mean arterial pressure above 65mmHg or at the personalized mean arterial pressure target
  • Mortality rate [ Time Frame: Through ICU discharge, an average of 1 month, up to 7, 30 and 90 days ]
    Overall mortality rate
  • VA-ECMO free days [ Time Frame: At 30 days from the VA-ECMO implantation ]
    Number of days alive free of VA-ECMO at 30 days after VA-ECMO implantation
  • Mean arterial pressure [ Time Frame: Up to 7 days ]
    lowest and highest mean arterial pressure (mmHg)
  • Pulse pressure [ Time Frame: Up to 7 days ]
    lowest and highest pulse pressure (mmHg) defined by the difference between systolic and diastolic pressure
  • Native cardiac output [ Time Frame: Up to 7 days ]
    lowest and highest cardiac output (L/min) measured by echocardiography (Doppler aortic Velocity Time Integration) or by a pulmonary artery catheter
  • ECMO flow [ Time Frame: Up to 7 days ]
    lowest and highest flow of VA-ECMO (L/min)
  • Lactate [ Time Frame: Up to 7 days ]
    Highest lactate level of the day (mmol/l)
  • ScvO2 [ Time Frame: Up to 7 days ]
    Highest and lowest central venous oxygen saturation (%)
  • Urine output [ Time Frame: Up to 7 days ]
    Total urine output of the day (ml/24H)
  • Hydric balance [ Time Frame: Up to 7 days ]
    Total hydric balance calculated from day 0 to day 7 (ml)
  • Hospital stay [ Time Frame: through study completion, an average of 3 month ]
    Length (days) of hospital stay from the VA-ECMO implantation before current care ward discharge (excluding rehabilitation time)
  • Intensive care unit stay [ Time Frame: through study completion, an average of 3 month ]
    Length (days) of intensive care unit stay from the VA-ECMO implantation
  • Issue of VA-ECMO [ Time Frame: 7 days after VA-ECMO withdrawal ]
    Status after VA-ECMO including death, heart transplant, ventricular assist device, recovery, shock recurrence, therapy limitation
  • Serious adverse events [ Time Frame: Trough VA-ECMO time completion, an average of 2 weeks ]
    Stroke, bleeding requiring blood transfusion or surgical revision, limb ischemia, mesenteric ischemia, documented infection
  • Organ failure assessment [ Time Frame: At day 0, 5 and 10 after VA-ECMO implantation ]
    Sequential Organ Failure Assessment score (0 to 24), higher values represent a worse outcome
Original Secondary Outcome Measures Same as current
Current Other Pre-specified Outcome Measures Not Provided
Original Other Pre-specified Outcome Measures Not Provided
 
Descriptive Information
Brief Title Hypotension During Extracorporeal Circulatory Support Indicated for Cardiogenic Shock
Official Title Vasoplegia During VA-ECMO for Refractory Cardiogenic Shock : Descriptive Analysis of a Retrospective Cohort
Brief Summary

The cardiogenic shock is characterized by an alteration of organs function following a decrease in cardiac output linked to an impairment of cardiac performance. The prognosis remains poor with mortality between 40 and 50%. Nowadays, Extracorporeal Life Support (ECLS or VA-ECMO) is the referent therapy to restore blood flow in the body when medical treatment is not sufficient. Despite a good blood flow provided by the ECLS, many patients develop a severe hypotension (so called vasoplegia) due to a loss of vascular resistance mainly explained by the inflammatory response to shock and extracorporeal circulation. The treatment of this reaction includes vasopressors (Norepinephrine in usual care) and serum surrogate perfusion to achieve a mean arterial pressure (MAP) above 65 mmHg.

The purpose of this study is to describe the patients with vasoplegia among a retrospective cohort of patients treated with an ECLS in our university center, over the 4 last years, to determine major complication rate (including death, kidney failure and arrythmias) and their outcome. This study will provide consistent data useful for further trials about targets of pressure and treatments to increase blood pressure during ECLS.

Detailed Description

Cardiogenic shock is characterized by global tissue hypoperfusion following a decrease in cardiac output by impairing myocardial performance in the absence of hypovolemia. This life-threatening hypoperfusion quickly leads to multiple organs dysfunction with a high risk of cardiac arrest. The main cause is ischemic. The prognosis remains poor with mortality between 40 and 50% and depends on the speed of care by a specialized team. Early etiologic treatment is essential, but initial symptomatic management is based on catecholamines, mainly norepinephrine and dobutamine. The intra-aortic balloon pump showed no improvement in survival in large randomized studies. Refractory cardiogenic shock is defined by the inefficiency or intolerance of catecholamines and the indication of temporary circulatory support should be considered as soon as possible in the absence of contraindications (comorbidities, advanced age, therapeutic limitation). The veno-arterial extracorporeal membrane oxygenation (VA-ECMO or ECLS) is the preferred circulatory assistance in this indication because it provides an overall circulatory support up to 100% of the theoretical cardiac output, with oxygenation, and is quickly implanted peripherally (surgical or percutaneous cannulation of the femoral vein and the femoral artery). However, this extracorporeal circulation also has disadvantages by opposing a major afterload to the failing left ventricle and reducing or even abolishing the pulmonary circulation and blood flow in the heart chambers. In addition, the interaction with the artificial surfaces and the oxygenation membrane of the extracorporeal circuit contributes to the inflammatory response already initiated as a result of low cardiac output, tissue hypoperfusion, mesenteric ischemia and possibly myocardial infarction in case of acute coronary syndrome. This systemic inflammatory response syndrome (SIRS) is similar to sepsis and its main clinical presentation is a vascular dysfunction resulting in vasoplegia and capillary leak syndrome responsible for relative hypovolemia and interstitial inflation.

Since the flow provided by the centrifugal pump is continuous, the blood pressure under VA-ECMO presents low or no pulsatile waves and is better represented by the mean arterial pressure (MAP). The ideal targets of MAP under VA-ECMO are controversial but it is widely accepted that the MAP should not be less than 65mmHg as recommended in septic shock to maintain an acceptable perfusion pressure and should not exceed 95mmHg to limit afterload. Between these limits, the MAP must be individualized according to each situation (hypertensive patient for example). In France, Norepinephrine is the first-line drug to achieve this goal of MAP after correction of volemia, without dose limitation in the absence of currently validated alternative, while resistance mechanisms can be activated, and its efficiency may be limited in case of acidosis. Potential side effects are the occurrence of atrial or ventricular arrhythmias, tachycardia, pro-inflammatory cytokine release, immunosuppression, renal dysfunction.

Management of MAP and vasopressors under VA-ECMO is poorly described in the literature (5), although Norepinephrine is widely used in routine practice. In particular, the investigators do not know the frequency of use and Norepinephrine doses during ECMO-VA, as well as their prognostic involvement. Vasoplegia during VA-ECMO is defined by a Norepinephrine dose greater than 0.1µg/kg/min after a 500ml fluid challenge despite overall blood flow (ECMO + native heart) greater than 2l/min/m2 or allowing to achieve 65% of ScvO2.

This cohort study aims to describe the vasoplegia observed during VA-ECMO, the Norepinephrine treatment characteristics, complications and outcome. The primary end-point is the incidence of a composite criteria of major complications including death, acute kidney injury and arrythmias.

Study Type Observational
Study Design Observational Model: Cohort
Time Perspective: Retrospective
Target Follow-Up Duration Not Provided
Biospecimen Retention:   None Retained
Description:
Plasma: preoperative, ICU admission at POD0 and POD1 samples
Sampling Method Non-Probability Sample
Study Population Patients admitted in intensive care unit for cardiogenic shock at the Montpellier University Hospital and who required a VA-ECMO implantation
Condition
  • Extracorporeal Life Support
  • Hypotension
  • Vasoplegia
Intervention Other: Arterial pressure management during circulatory support by VA-ECMO
Norepinephrine continuous infusion to maintain mean arterial pressure above 65 mmHg or at a higher level depending of the perfusion pressure targeted for the patient (mean arterial pressure between 65 and 85 mmHg)
Study Groups/Cohorts Vasoplegic ECMO
All patients during VA-ECMO support for cardiogenic shock who presented, within 48 hours after implantation, a vasoplegia defined by a norepinephrine dose greater than 0.1µg/kg/min after a 500ml fluid challenge despite overall blood flow (ECMO + native heart) greater than 2l/min/m2 or allowing to achieve 65% of ScvO2
Intervention: Other: Arterial pressure management during circulatory support by VA-ECMO
Publications *
  • van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, Kilic A, Menon V, Ohman EM, Sweitzer NK, Thiele H, Washam JB, Cohen MG; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Mission: Lifeline. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation. 2017 Oct 17;136(16):e232-e268. doi: 10.1161/CIR.0000000000000525. Epub 2017 Sep 18. Review.
  • Tanaka D, Shimada S, Mullin M, Kreitler K, Cavarocchi N, Hirose H. What Is the Optimal Blood Pressure on Veno-Arterial Extracorporeal Membrane Oxygenation? Impact of Mean Arterial Pressure on Survival. ASAIO J. 2019 May/Jun;65(4):336-341. doi: 10.1097/MAT.0000000000000824.

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruitment Information
Recruitment Status Recruiting
Estimated Enrollment
 (submitted: May 28, 2019)
150
Original Estimated Enrollment Same as current
Estimated Study Completion Date December 30, 2020
Estimated Primary Completion Date December 1, 2020   (Final data collection date for primary outcome measure)
Eligibility Criteria

Inclusion criteria:

  • Refractory cardiogenic shock due to an acute coronary syndrome, a decompensation of chronic heart failure, a infectious or adrenergic myocarditis, or in a post-cardiotomy setting
  • Admitted in our intensive care unit between January 2015 and December 2018
  • Vasoplegia during the first 48 hours of VA-ECMO requiring more than 0.1µg/kg/min of Norepinephrine continuous infusion

Exclusion criteria:

  • Others etiologies of cardiogenic shock : heart transplant dysfunction, right ventricular failure after left ventricular assist device implantation, drug intoxication, hypothermia, pulmonary embolism
  • Primary septic shock
  • Cardiac arrest with a no-flow time greater than 5 min or a low-flow time greater than 45 min
  • Opposition to participate after reception of the information letter
Sex/Gender
Sexes Eligible for Study: All
Ages 18 Years to 80 Years   (Adult, Older Adult)
Accepts Healthy Volunteers No
Contacts
Contact: Philippe Gaudard, MD +33665849543 p-gaudard@chu-montpellier.fr
Contact: Helene David, MD 629834346 ext 33 h-david@chu-montpellier.fr
Listed Location Countries France
Removed Location Countries  
 
Administrative Information
NCT Number NCT03968926
Other Study ID Numbers RECHMPL19_0049
Has Data Monitoring Committee No
U.S. FDA-regulated Product
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
IPD Sharing Statement
Plan to Share IPD: No
Responsible Party University Hospital, Montpellier
Study Sponsor University Hospital, Montpellier
Collaborators Not Provided
Investigators
Principal Investigator: Philippe Gaudard, MD University Hospital, Montpellier
PRS Account University Hospital, Montpellier
Verification Date March 2020