Condition or disease | Intervention/treatment | Phase |
---|---|---|
Non-small Cell Lung Cancer Primary Neoplasm | Device: VisiblePatient™ 3D Lung Modelling Drug: IC-Green (ICG) | Phase 1 Phase 2 |
Lungs are made up of individual lobes. When a lung cancer tumour is found in one of these lobes, the surgeon often performs a Lobectomy. A Lobectomy is the surgery most commonly done to treat early-stage lung cancer and requires removal of an entire lobe of the lung, which removes a large amount of lung tissue
For patients with small tumours saving as much healthy lung tissue as possible is important. Each lobe of the lung has smaller sections called segments. When a lung cancer is in one of these segments, it is possible to remove that segment, without removing the entire lobe. This surgery is called a Segmentectomy. Compared to a lobectomy, a segmentectomy saves a larger amount of healthy lung tissue. Research shows that a segmentectomy can result in less blood loss, shorter operation time, less days of having a chest tube, and a shorter hospital stay, compared to a lobectomy.
With the advances in screening technology for lung cancer tumours, an increasing amount of very small lung cancer tumours are being found, and the demand for segmentectomy is increasing. A segmentectomy is a hard surgery to perform robotically because it is difficult to view the tissue lines that separate each segment within the lobe. As a result, it is difficult for the surgeon to see exactly which pieces of tissue should be removed in order to safely complete the segmentectomy. Because of these challenges, many patients having robotic surgery will have a lobectomy, even if a full lobectomy is not needed.
In response to these challenges, our surgical group has developed the technique of using Near-Infrared Fluorescence (NIF) mapping with intravascular indocyanine green (ICG) dye injection. With the aid of an infrared camera the surgeon is able to see the segment within a lobe of lung after injection of the ICG dye, allowing for a more accurate segmentectomy. We recently reported a 60% success rate of segmental resections with the use of ICG and NIF-guided surgical resection. However, a limitation to this technique is that the segmental anatomy can only be seen during the operation and only after cutting the blood vessels.
The introduction of 3D reconstruction and virtual modeling provides a new way to locate lesions accurately within a segment and plan the appropriate operation before the actual surgery occurs. Visible Patient™ (Strasbourg, France) is a 3D modelling technology that is capable of producing a detailed 3D virtual model of a patient's lung based on Computed Tomography (CT) scans. It has been shown to be safe and feasible in performing segmental pulmonary resections on a robotic platform. In this study, we propose a new operation that uses 3D anatomical planning before the surgery (Visible Patient™) and real-time NIF-mapping at the time of surgery using ICG dye, which we believe will greatly increase the likelihood of a successful segmentectomy. If this new operation is successful, it will help patients save more of their healthy lung tissue when they are undergoing surgery for lung cancer.
Study Type : | Interventional (Clinical Trial) |
Estimated Enrollment : | 32 participants |
Allocation: | N/A |
Intervention Model: | Single Group Assignment |
Intervention Model Description: | This study is a single centre, prospective clinical trial evaluating the safety and feasibility of adding 3D anatomical reconstructions and real-time intraoperative planning using Visible Patient™ software added to NIF-guided targeted segmental resection. It is anticipated that 32 participants will be enrolled within a 1-year period. Enrollment will take place at St. Joseph's Healthcare Hamilton. All patients enrolled will be evaluated until their first scheduled follow-up appointment (within 30 days post-surgery). |
Masking: | None (Open Label) |
Masking Description: | Open Label, single-arm feasibility trial. |
Primary Purpose: | Treatment |
Official Title: | VISible Patient™ With Intravascular indOcyaNine Green Fluorescence Mapping for Targeted Pulmonary Segmental Resection (VISION) Trial: A Phase I Safety and Feasibility Trial |
Estimated Study Start Date : | January 1, 2022 |
Estimated Primary Completion Date : | December 31, 2022 |
Estimated Study Completion Date : | January 31, 2023 |
Arm | Intervention/treatment |
---|---|
Experimental: VisiblePatient™ 3D Lung Modelling + IC-GREEN Segmentectomy
Patients within this arm will undergo a high-resolution CT scan of the chest, which is required by Visible Patient™ to create accurate 3D virtual model reconstructions. At the start of the operation, the 3D virtual model of the segmental pulmonary anatomy will be displayed on the da Vinci Robotic platform for operative planning. The model will be used as a guide to determine which vessels are involved in the segment and need to be removed. The surgeon will ligate the pulmonary vein and pulmonary artery of the broncho-pulmonary segment with the lung cancer nodule, isolating it from any blood supply, and mark the proposed segmental planes based on the 3D model. ICG will be prepared as a sterile solution (2.5 mg/10mL) for injection. After vascular ligation, an 8 mL bolus of ICG solution will be injected into the peripheral vein catheter, followed by a 10 mL saline solution bolus
|
Device: VisiblePatient™ 3D Lung Modelling
The 3D virtual models provided by Visible Patient™ will be made by experts in medical image analysis using the high-resolution CT scans. Patients will have 3D virtual reconstructions of their pulmonary anatomy with the target lesion created pre-operatively.
Drug: IC-Green (ICG) ICG will be prepared as a sterile solution (2.5 mg/10mL) for injection. After vascular ligation, a 6 to 8mL bolus of ICG solution will be injected into the peripheral vein catheter, followed by a 10mL saline solution bolus. The Firefly camera will then be used for the NIF imaging. It is expected that the entire lung, except the segment which was previously isolated from blood supply, will fluoresce within 30-40 seconds, exhibiting a green hue. The surgeon will perform the pulmonary resection and the resected 'dark' lung segment will be immediately evaluated by a pathologist, depending on the pathologist findings the operation may be concluded or the patient will receive a pulmonary lobectomy.
Other Name: Indocyanine Green
|
Anatomical accuracy will be evaluated using the criteria listed in points a-c. A score of 3/3 on these items will indicate success of anatomical accuracy
A pre-operative CT scan based, a pre-operative 3D reconstruction based and post segmental resection surgeon confidence score will be obtained on a scale of 1-5:
1 - not at all confident, 2 - somewhat confident, 3 - confident, 4 - very confident, 5 - extremely confident.
Ages Eligible for Study: | 18 Years and older (Adult, Older Adult) |
Sexes Eligible for Study: | All |
Accepts Healthy Volunteers: | No |
Inclusion Criteria:
Exclusion Criteria:
Contact: Peter R. A. Malik, BHSc (Honours) | 905-522-1155 ext 35096 | malikpr@mcmaster.ca | |
Contact: Yogita S Patel, BSc | 905-522-1155 ext 35096 | patelys@mcmaster.ca |
Canada, Ontario | |
St. Josephs Healthcare Hamilton | |
Hamilton, Ontario, Canada, L8N 4A6 | |
Contact: Peter R. A. Malik, BHSc 905-522-1155 ext 35096 malikpr@mcmaster.ca | |
Contact: Yogita S Patel, BSc 905-522-1155 ext 35096 patelys@mcmaster.ca | |
Principal Investigator: Wael C. Hanna, MDCM, MBA, FRCSC |
Principal Investigator: | Waël C Hanna, MDCM, MBA, FRCSC | St. Joseph's Healthcare Hamilton / McMaster University |
Tracking Information | |||||||||
---|---|---|---|---|---|---|---|---|---|
First Submitted Date ICMJE | April 30, 2019 | ||||||||
First Posted Date ICMJE | May 16, 2019 | ||||||||
Last Update Posted Date | April 26, 2021 | ||||||||
Estimated Study Start Date ICMJE | January 1, 2022 | ||||||||
Estimated Primary Completion Date | December 31, 2022 (Final data collection date for primary outcome measure) | ||||||||
Current Primary Outcome Measures ICMJE |
|
||||||||
Original Primary Outcome Measures ICMJE | Same as current | ||||||||
Change History | |||||||||
Current Secondary Outcome Measures ICMJE |
|
||||||||
Original Secondary Outcome Measures ICMJE | Same as current | ||||||||
Current Other Pre-specified Outcome Measures | Not Provided | ||||||||
Original Other Pre-specified Outcome Measures | Not Provided | ||||||||
Descriptive Information | |||||||||
Brief Title ICMJE | Visible Patient™ With Intravascular Indocyanine Green | ||||||||
Official Title ICMJE | VISible Patient™ With Intravascular indOcyaNine Green Fluorescence Mapping for Targeted Pulmonary Segmental Resection (VISION) Trial: A Phase I Safety and Feasibility Trial | ||||||||
Brief Summary | With the advent of CT screening for lung cancer, an increasing number of NSCLCs are being detected at very early stages, and the demand for pulmonary segmentectomy is rising rapidly. As such, there is a need to develop new surgical techniques to facilitate minimally invasive pulmonary segmentectomy, as segmentectomy may provide a number of significant advantages over lobectomy for patients presenting with early-stage lung cancer, or for patients unable to undergo a full lobectomy due to existing comorbidities. This study will provide the first case series using preoperative 3D anatomical planning (Visible Patient™) added to ICG and NIF-guided robotic segmentectomy to date and will be the first reported use of Visible Patient™-guided targeted pulmonary segmental resection in Canada. As lung cancer is the most frequently fatal cancer in North America, many thousands of patients will be able to benefit from this operation every year. | ||||||||
Detailed Description |
Lungs are made up of individual lobes. When a lung cancer tumour is found in one of these lobes, the surgeon often performs a Lobectomy. A Lobectomy is the surgery most commonly done to treat early-stage lung cancer and requires removal of an entire lobe of the lung, which removes a large amount of lung tissue For patients with small tumours saving as much healthy lung tissue as possible is important. Each lobe of the lung has smaller sections called segments. When a lung cancer is in one of these segments, it is possible to remove that segment, without removing the entire lobe. This surgery is called a Segmentectomy. Compared to a lobectomy, a segmentectomy saves a larger amount of healthy lung tissue. Research shows that a segmentectomy can result in less blood loss, shorter operation time, less days of having a chest tube, and a shorter hospital stay, compared to a lobectomy. With the advances in screening technology for lung cancer tumours, an increasing amount of very small lung cancer tumours are being found, and the demand for segmentectomy is increasing. A segmentectomy is a hard surgery to perform robotically because it is difficult to view the tissue lines that separate each segment within the lobe. As a result, it is difficult for the surgeon to see exactly which pieces of tissue should be removed in order to safely complete the segmentectomy. Because of these challenges, many patients having robotic surgery will have a lobectomy, even if a full lobectomy is not needed. In response to these challenges, our surgical group has developed the technique of using Near-Infrared Fluorescence (NIF) mapping with intravascular indocyanine green (ICG) dye injection. With the aid of an infrared camera the surgeon is able to see the segment within a lobe of lung after injection of the ICG dye, allowing for a more accurate segmentectomy. We recently reported a 60% success rate of segmental resections with the use of ICG and NIF-guided surgical resection. However, a limitation to this technique is that the segmental anatomy can only be seen during the operation and only after cutting the blood vessels. The introduction of 3D reconstruction and virtual modeling provides a new way to locate lesions accurately within a segment and plan the appropriate operation before the actual surgery occurs. Visible Patient™ (Strasbourg, France) is a 3D modelling technology that is capable of producing a detailed 3D virtual model of a patient's lung based on Computed Tomography (CT) scans. It has been shown to be safe and feasible in performing segmental pulmonary resections on a robotic platform. In this study, we propose a new operation that uses 3D anatomical planning before the surgery (Visible Patient™) and real-time NIF-mapping at the time of surgery using ICG dye, which we believe will greatly increase the likelihood of a successful segmentectomy. If this new operation is successful, it will help patients save more of their healthy lung tissue when they are undergoing surgery for lung cancer. |
||||||||
Study Type ICMJE | Interventional | ||||||||
Study Phase ICMJE | Phase 1 Phase 2 |
||||||||
Study Design ICMJE | Allocation: N/A Intervention Model: Single Group Assignment Intervention Model Description: This study is a single centre, prospective clinical trial evaluating the safety and feasibility of adding 3D anatomical reconstructions and real-time intraoperative planning using Visible Patient™ software added to NIF-guided targeted segmental resection. It is anticipated that 32 participants will be enrolled within a 1-year period. Enrollment will take place at St. Joseph's Healthcare Hamilton. All patients enrolled will be evaluated until their first scheduled follow-up appointment (within 30 days post-surgery). Masking: None (Open Label)Masking Description: Open Label, single-arm feasibility trial. Primary Purpose: Treatment
|
||||||||
Condition ICMJE |
|
||||||||
Intervention ICMJE |
|
||||||||
Study Arms ICMJE | Experimental: VisiblePatient™ 3D Lung Modelling + IC-GREEN Segmentectomy
Patients within this arm will undergo a high-resolution CT scan of the chest, which is required by Visible Patient™ to create accurate 3D virtual model reconstructions. At the start of the operation, the 3D virtual model of the segmental pulmonary anatomy will be displayed on the da Vinci Robotic platform for operative planning. The model will be used as a guide to determine which vessels are involved in the segment and need to be removed. The surgeon will ligate the pulmonary vein and pulmonary artery of the broncho-pulmonary segment with the lung cancer nodule, isolating it from any blood supply, and mark the proposed segmental planes based on the 3D model. ICG will be prepared as a sterile solution (2.5 mg/10mL) for injection. After vascular ligation, an 8 mL bolus of ICG solution will be injected into the peripheral vein catheter, followed by a 10 mL saline solution bolus
Interventions:
|
||||||||
Publications * |
|
||||||||
* Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline. |
|||||||||
Recruitment Information | |||||||||
Recruitment Status ICMJE | Not yet recruiting | ||||||||
Estimated Enrollment ICMJE |
32 | ||||||||
Original Estimated Enrollment ICMJE | Same as current | ||||||||
Estimated Study Completion Date ICMJE | January 31, 2023 | ||||||||
Estimated Primary Completion Date | December 31, 2022 (Final data collection date for primary outcome measure) | ||||||||
Eligibility Criteria ICMJE |
Inclusion Criteria:
Exclusion Criteria:
|
||||||||
Sex/Gender ICMJE |
|
||||||||
Ages ICMJE | 18 Years and older (Adult, Older Adult) | ||||||||
Accepts Healthy Volunteers ICMJE | No | ||||||||
Contacts ICMJE |
|
||||||||
Listed Location Countries ICMJE | Canada | ||||||||
Removed Location Countries | |||||||||
Administrative Information | |||||||||
NCT Number ICMJE | NCT03953144 | ||||||||
Other Study ID Numbers ICMJE | VISION10042019 | ||||||||
Has Data Monitoring Committee | No | ||||||||
U.S. FDA-regulated Product |
|
||||||||
IPD Sharing Statement ICMJE |
|
||||||||
Responsible Party | Wael Hanna, St. Joseph's Healthcare Hamilton | ||||||||
Study Sponsor ICMJE | St. Joseph's Healthcare Hamilton | ||||||||
Collaborators ICMJE | Not Provided | ||||||||
Investigators ICMJE |
|
||||||||
PRS Account | St. Joseph's Healthcare Hamilton | ||||||||
Verification Date | April 2021 | ||||||||
ICMJE Data element required by the International Committee of Medical Journal Editors and the World Health Organization ICTRP |